Interpretation of Cuneiform Mathematics

1. General remarks and new facts in number-representation 2. Linear equations 3. Quadratic equations 4. Computational aids and techniques 5. Geometry. 6. Soluble problems. Number theoretical results 7. Heronic triangles in Old Babylonian Mathematics 8. Euclid and the angle 9. The geometry of the plu...

Full description

Bibliographic Details
Main Author: Bruins, Evert M.
Format: Print Article
In:Physis
Year: 1962, Volume: 4, Pages: 277-340, 24 fig.
KeiBi Identifier:25:68
LEADER 01339naa a22002532 4500
001 KEI00113011
005 20230711085039.0
008 141228s1962 xx ||||| 00| ||ger c
100 |a Bruins, Evert M.  |4 aut  |e VerfasserIn 
245 |a Interpretation of Cuneiform Mathematics 
264 |c 1962 
520 |a 1. General remarks and new facts in number-representation 2. Linear equations 3. Quadratic equations 4. Computational aids and techniques 5. Geometry. 6. Soluble problems. Number theoretical results 7. Heronic triangles in Old Babylonian Mathematics 8. Euclid and the angle 9. The geometry of the plummet 10. Numerical data; 341 = riassunto italiano. 
773 1 8 |a Physis 
936 u w |d 4  |h 277-340, 24 fig.  |j 1962 
BIB |a Bruins1962 
BIT |a article 
HRW |a 0 
KEI |d d 
KEI |b 68 
RAW |a Bruins, Evert M., Interpretation of Cuneiform Mathematics [1. General remarks and new facts in number-representation 2. Linear equations 3. Quadratic equations 4. Computational aids and techniques 5. Geometry. 6. Soluble problems. Number theoretical results 7. Heronic triangles in Old Babylonian Mathematics 8. Euclid and the angle 9. The geometry of the plummet 10. Numerical data]: Physis 4 (1962) 277-340 [341 = riassunto italiano], 24 fig. 
STA |a OK 
UID |a 113011 
USR |a 13 
VOL |a 25