Interpretation of Cuneiform Mathematics
1. General remarks and new facts in number-representation 2. Linear equations 3. Quadratic equations 4. Computational aids and techniques 5. Geometry. 6. Soluble problems. Number theoretical results 7. Heronic triangles in Old Babylonian Mathematics 8. Euclid and the angle 9. The geometry of the plu...
Main Author: | |
---|---|
Format: | Print Article |
In: | Physis Year: 1962, Volume: 4, Pages: 277-340, 24 fig. |
KeiBi Identifier: | 25:68 |
LEADER | 01339naa a22002532 4500 | ||
---|---|---|---|
001 | KEI00113011 | ||
005 | 20230711085039.0 | ||
008 | 141228s1962 xx ||||| 00| ||ger c | ||
100 | |a Bruins, Evert M. |4 aut |e VerfasserIn | ||
245 | |a Interpretation of Cuneiform Mathematics | ||
264 | |c 1962 | ||
520 | |a 1. General remarks and new facts in number-representation 2. Linear equations 3. Quadratic equations 4. Computational aids and techniques 5. Geometry. 6. Soluble problems. Number theoretical results 7. Heronic triangles in Old Babylonian Mathematics 8. Euclid and the angle 9. The geometry of the plummet 10. Numerical data; 341 = riassunto italiano. | ||
773 | 1 | 8 | |a Physis |
936 | u | w | |d 4 |h 277-340, 24 fig. |j 1962 |
BIB | |a Bruins1962 | ||
BIT | |a article | ||
HRW | |a 0 | ||
KEI | |d d | ||
KEI | |b 68 | ||
RAW | |a Bruins, Evert M., Interpretation of Cuneiform Mathematics [1. General remarks and new facts in number-representation 2. Linear equations 3. Quadratic equations 4. Computational aids and techniques 5. Geometry. 6. Soluble problems. Number theoretical results 7. Heronic triangles in Old Babylonian Mathematics 8. Euclid and the angle 9. The geometry of the plummet 10. Numerical data]: Physis 4 (1962) 277-340 [341 = riassunto italiano], 24 fig. | ||
STA | |a OK | ||
UID | |a 113011 | ||
USR | |a 13 | ||
VOL | |a 25 |